Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera
نویسندگان
چکیده
The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.
منابع مشابه
Data of in vitro synthesized dsRNAs on growth and development of Helicoverpa armigera
The data presented in this article is related to the research article "RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera" (Chikate et al., 2016) [1]. RNA interference (RNAi) is emerging as a potent insect pest control strategy over current methods and their resistance by pest. In this study we tested 15 different in vitro synthesized dsRNAs for gene sile...
متن کاملSilencing the HaHR3 Gene by Transgenic Plant-mediated RNAi to Disrupt Helicoverpa armigera Development
RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique in functional genomics, and to date it is widely used to down-regulate crucial physiology-related genes to control pest insects. A molt-regulating transcription factor gene, HaHR3, of cotton bollworm (Helicoverpa armigera) was selected as the target gene. Four different fragments cove...
متن کاملDevelopment associated profiling of chitinase and microRNA of Helicoverpa armigera identified chitinase repressive microRNA
Expression of chitinase is developmentally regulated in insects in consonance with their molting process. During the larval-larval metamorphosis in Helicoverpa armigera, chitinase gene expression varies from high to negligible. In the five-day metamorphic course of fifth-instar larvae, chitinase transcript is least abundant on third day and maximal on fifth day. MicroRNA library prepared from t...
متن کاملIn silico designing of insecticidal small interfering RNA (siRNA) for Helicoverpa armigera control.
Helicoverpa armigera, a polyphagous lepidopteron insect pest causes severe yield loss in cotton, legumes, tomato, okra and other crops. Application of chemical pesticides although effective, has human health and environmental safety concerns. Moreover, development of resistance against most of the available pesticides is compelling to look for alternative strategies. Adoption of Bt transgenic c...
متن کاملDouble-Stranded RNA-Mediated Suppression of Trypsin-Like Serine Protease (t-SP) Triggers Over-Expression of Another t-SP Isoform in Helicoverpa armigera.
High diversity of digestive proteases is considered to be the key factor in the evolution of polyphagy in Helicoverpa armigera. Serine proteases (SPs) contribute ~85% of the dietary protein digestion in H. armigera. We investigated the dynamics of SP regulation in the polyphagous pest, H. armigera using RNA interference (RNAi). HaTry1, an isoform of SP, expressed irrespective of the composition...
متن کامل